资源类型

期刊论文 99

年份

2023 13

2022 6

2021 12

2020 7

2019 8

2018 7

2017 5

2016 1

2015 8

2014 5

2013 7

2012 1

2011 2

2010 3

2009 2

2008 3

2007 1

2006 1

2005 2

2004 1

展开 ︾

关键词

锌空气电池 2

7815 1

T试剂 1

三相界面 1

主要矛盾 1

亚甲基蓝 1

冷却管 1

分体式电极 1

分布式数据采集系统 1

分离循环技术 1

制约因素 1

动力学 1

动力电池 1

动态值迭代网络;场景式Q学习;无人机自组网;NSGA-II;路径规划 1

区域协同 1

单电池 1

吸附 1

响应面分析法 1

多孔电极 1

展开 ︾

检索范围:

排序: 展示方式:

Preparation and application of a phosphorous free and non-nitrogen scale inhibitor in industrial cooling water systems

Guangqing LIU,Mengwei XUE,Jingyi HUANG,Huchuan WANG,Yuming ZHOU,Qingzhao YAO,Lei LING,Ke CAO,Yahui LIU,Yunyun BU,Yiyi CHEN,Wendao WU,Wei SUN

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 545-553 doi: 10.1007/s11783-014-0657-x

摘要: A novel environmentally friendly type of calcium carbonate, zinc (II) and iron (III) scale inhibitor Acrylic acid- allylpolyethoxy carboxylate copolymer (AA-APEL) was synthesized. The anti-scale property of the AA-APEL toward CaCO , zinc (II) and iron (III) in the artificial cooling water was studied through static scale inhibition tests. The observation shows that both calcium carbonate, zinc (II) and iron (III) inhibition increase with increasing the dosage of AA-APEL. The effect on formation of CaCO was investigated with combination of scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) analysis and fourier transform infrared spectrometer, respectively. The results showed that the AA-APEL copolymer not only influenced calcium carbonate crystal morphology and crystal size but also the crystallinity. The crystallization of CaCO in the absence of inhibitor was rhombohedral calcite crystal, whereas a mixture of calcite with vaterite crystals was found in the presence of the AA-APEL copolymer. Inhibition mechanism is proposed that the interactions between calcium or iron ions and polyethylene glycol (PEG) are the fundamental impetus to restrain the formation of the scale in cooling water systems.

关键词: phosphorous free     calcium carbonate     stabilize zinc (II)     disperse iron (III)     cooling water    

Geosynthetics used to stabilize vegetated surfaces for environmental sustainability in civil engineering

Jie HAN,Jun GUO

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 56-65 doi: 10.1007/s11709-016-0380-8

摘要: Geosynthetics, factory-manufactured polymer materials, have been successfully used to solve many geotechnical problems in civil engineering. Two common applications are earth stabilization and erosion control. Geosynthetics used for earth stabilization include but are not limited to stabilized slopes, walls, embankments, and roads. Geosynthetics used for erosion control are mostly related to slopes, river channels and banks, and pond spillways. To enhance environmental sustainability, vegetation has been increasingly planted on the facing or surfaces of these earth structures. Under such a condition, geosynthetics mainly function as surficial soil stabilization while vegetation provides green appearance and erosion protection of earth surfaces. Recently, geosynthetic or geosynthetic-like material has been used to form green walls outside or inside buildings to enhance sustainability. Geosynthetics and vegetation are often integrated to provide combined benefits. The interaction between geosynthetics and vegetation is important for the sustainability of the earth and building wall surfaces. This paper provides a review of the current practice and research in the geosynthetic stabilization of vegetated earth and building surfaces for environmental sustainability in civil engineering with the emphases on geosynthetic used for erosion protection, geosynthetic-stabilized slopes, geosynthetic-stabilized unpaved shoulders and parking lots, and geosynthetic-stabilized vegetated building surfaces.

关键词: erosion     geosynthetic     stabilization     sustainability     vegetation    

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1101-1113 doi: 10.1007/s11705-021-2095-1

摘要: Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L–1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.

关键词: Janus nanoparticles     surfactant     double phase inversion     self-assembly     enhanced oil recovery    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

Zinc homeostasis in the metabolic syndrome and diabetes

null

《医学前沿(英文)》 2013年 第7卷 第1期   页码 31-52 doi: 10.1007/s11684-013-0251-9

摘要:

Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.

关键词: zinc     zinc transporters     metallothionein     diabetes     diabetic complications     insulin resistance     antioxidant    

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 236-242 doi: 10.1007/s11783-010-0218-8

摘要: Copper and zinc interaction on clearance from water and distribution in different tissues was investigated for the freshwater mussel, , under laboratory conditions. Clearance rate of Cu or Zn from water was highly dependent on exposure concentration. Interaction effect was most evident at 300 μg·L Cu exposure and depressed the Zn clearance rate significantly ( <0.05). However, the presence of 100 μg·L and 300 μg·L Zn hardly affected the Cu clearance rate. The 300 μg·L Cu presence enhanced Cu accumulation in each tissue most significantly ( <0.01), but caused Zn content to decrease in the gills by 62% ( <0.05), viscera by 49% ( <0.05) and foot by 31% ( <0.05), and increase in the mantle by 97% ( <0.05) and the muscles by 243% ( <0.05) for different Zn exposure treatments. The response of metal accumulation in various tissues of the test mussels indicated that Zn transferred from the gills, viscera and foot to the mantle and muscles might be one of the important characteristics of the Zn regulatory mechanism by leading to a narrow range of Zn concentration in the different tissues.

关键词: interaction     mussel     copper     zinc     clearance     distribution    

J-shaped association between dietary zinc intake and new-onset hypertension: a nationwide cohort study

《医学前沿(英文)》 2023年 第17卷 第1期   页码 156-164 doi: 10.1007/s11684-022-0932-3

摘要: We aimed to investigate the relationship of dietary zinc intake with new-onset hypertension among Chinese adults. A total of 12,177 participants who were free of hypertension at baseline from the China Health and Nutrition Survey were included. Dietary intake was assessed by three consecutive 24-h dietary recalls combined with a household food inventory. Participants with systolic blood pressure 140 mmHg or diastolic blood pressure 90 mmHg or diagnosed by a physician or under antihypertensive treatment during the follow-up were defined as having new-onset hypertension. During a median follow-up duration of 6.1 years, 4269 participants developed new-onset hypertension. Overall, the association between dietary zinc intake and new-onset hypertension followed a J-shape (P for non-linearity < 0.001). The risk of new-onset hypertension significantly decreased with the increment of dietary zinc intake (per mg/day: hazard ratio (HR) 0.93; 95% confidence interval (CI) 0.88–0.98) in participants with zinc intake < 10.9 mg/day, and increased with the increment of zinc intake (per mg/day: HR 1.14; 95% CI 1.11–1.16) in participants with zinc intake 10.9 mg/day. In conclusion, there was a J-shaped association between dietary zinc intake and new-onset hypertension in general Chinese adults, with an inflection point at about 10.9 mg/day.

关键词: dietary zinc intake     new-onset hypertension     general population     CHNS    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Templated synthesis of urchin-like zinc oxide particles by micro-combustion

Xintong ZHOU, Quan ZHANG, Chang-jun LIU

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 73-78 doi: 10.1007/s11705-014-1404-3

摘要: Micro-combustion initiated by dielectric barrier discharge plasma has been applied for the removal of carbon template to prepare urchin-like ZnO particles. The combustion is operated at atmospheric pressure and low gas temperature (less than 150 °C), and the template is fully decomposed and rapidly removed. The obtained urchin-like ZnO possesses two distinct morphologies: nanosheets and sub-micro rods. The unique morphologies form on ZnO hexagonal nuclei with the template effect of activated carbon.

关键词: dielectric-barrier discharge     zinc oxide     carbon template     removal     plasma    

electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1244-1253 doi: 10.1007/s11705-022-2293-5

摘要: Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

关键词: zinc-ion battery     CaV8O20     polyaniline coating     synergistic engineering     high capacity     long durability    

A microextraction approach for rapid extraction and separation of Mn(II) and Co(II) using saponified

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 963-972 doi: 10.1007/s11705-021-2081-7

摘要: In this paper, we proposed a microextraction approach for the extraction and separation of Mn(II) and Co(II) from sulfate solution simulating leachate of spent lithium-ion battery cathode materials using saponified di-(2-ethylhexyl)phosphoric acid system. The effects of the following operational variables were investigated: equilibrium pH, tri-n-butyl phosphate concentration, saponification rate, two-phase ratio and residence time. The results showcased that the microextractor can reach the extraction equilibrium within 20 s, thereby greatly reducing necessary extraction time comparing to that of conventional processes. The volumetric mass transfer coefficient showed 8–21 times larger than that of batch device. With the help of microextractor, 95% of Mn(II) was extracted with a single theoretical stage at a chosen two-phase ratio of 3:1, and the separation factor βMn/Co was as large as 65.5. In the subsequent stripping step, more than 99% of manganese from loaded phase was easily stripped under optimal conditions. The microextraction approach greatly enhances the mass transfer while enabling a continuous and controllable extraction process within a simple structure design. When extracting spent electrode material with microextractors, the comprehensive recovery of mangenese can reach 96%. The microextraction approach has a good applicability in the spent lithium-ion battery cathode materials recycling at both bench and industrial scales.

关键词: extraction equilibrium     mass transfer coefficient     microextraction     multicomponent extraction     di-(2-ethylhexyl)phosphoric acid    

Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 912-918 doi: 10.1007/s11783-015-0789-7

摘要: The widespread production and use of zinc oxide nanoparticles (ZnO-NPs) in recent years have posed potential threat to the ecosystem. This study aimed to investigate the ecotoxicological effect of ZnO-NPs on soil microorganisms using laboratory microcosm test. Respiration, ammonification, dehydrogenase (DH) activity, and fluorescent diacetate hydrolase (FDAH) activity were used as ecotoxicological parameters. The results showed that in the neutral soil treated with 1 mg ZnO-NPs per g soil (fresh, neutral), ammonification was significantly inhibited during the study period of three months, but the inhibition rate decreased over increasing time. Inhibition in respiration was observed in the first month of the test. In various ZnO-NPs treatments (1 mg, 5 mg, and 10 mg ZnO-NPs per g soil), DH activity and FDAH activity were inhibited during the study period of one month. For both enzyme activities, there were positive dose–response relationships between the concentration of ZnO-NPs and the inhibition rates, but the curves changed over time due to changes of ZnO-NPs toxicity. Soil type affected the toxicity of ZnO-NPs in soil. The toxicity was highest in the acid soil, followed by the neutral soil. The toxicity was relatively low in the alkaline soil. The toxicity was not accounted for by the Zn released from the ZnO-NPs. Direct interaction of ZnO-NPs with biologic targets might be one of the reasons. The adverse effect of ZnO-NPs on soil microorganisms in neutral and acid soils is worthy of attention.

关键词: zinc oxide nanoparticles (ZnO-NPs)     soil microorganisms     respiration     ammonification     dehydrogenase (DH) activity     fluorescent diacetate hydrolase (FDAH) activity    

Enhanced debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by zero-valent zinc with ascorbic

Chaojin Jiang, Xiaoqian Jiang, Lixun Zhang, Yuntao Guan

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1224-2

摘要: Highly efficient debromination of BDE-47 was achieved in the ZVZ/AA system. BDE-47 debromination by the ZVZ/AA can be applied to a wide range of pH. AA inhibits the formation of (hydr)oxide and accelerates the corrosion of ZVZ. Reduction mechanism of BDE-47 debromination by the ZVZ/AA system was proposed. A new technique of zero-valent zinc coupled with ascorbic acid (ZVZ/AA) was developed and applied to debrominate the 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), which achieved high conversion and rapid debromination of BDE-47 to less- or non-toxic forms. The reaction conditions were optimized by the addition of 100 mg/L ZVZ particles and 3 mmol/L AA at original solution pH= 4.00 using the solvent of methanol/H2O (v:v= 4:6), which could convert approximately 94% of 5 mg/L BDE-47 into lower-brominated diphenyl ethers within a 90 min at the ZVZ/AA system. The high debromination of BDE-47 was mainly attributed to the effect of AA that inhibits the formation of Zn(II)(hydr)oxide passivation layers and promotes the corrosion of ZVZ, which leads to increase the reactivity of ZVZ. Additionally, ion chromatography and gas chromatography mass spectrometry analyses revealed that bromine ion and lower-debromination diphenyl ethers formed during the reduction of BDE-47. Furthermore, based on the generation of the intermediates products, and its concentration changes over time, it was proposed that the dominant pathway for conversion of BDE-47 was sequential debromination and the final products were diphenyl ethers. These results suggested that the ZVZ/AA system has the potential for highly efficient debromination of BDE-47 from wastewater.

关键词: 2     2′     4     4′-tetrabromodiphenyl ether (BDE-47)     Ascorbic acid     Reductive debromination     Zero-valent zinc    

锌液冷却管损坏机理的研究

袁望姣,何将三

《中国工程科学》 2005年 第7卷 第9期   页码 56-60

摘要:

炼锌工业中广泛使用由无缝钢管冷弯而成的冷却管来实现锌液的冷却。冷却管的使用寿命非常短,消耗量相当大。锌液的表面张力小,渗透性强,腐蚀性强,能与冷却管中的铁元素生成铁-锌合金,能溶解冷却管中碳、硅等元素,锌液对冷却管的强腐蚀性,是影响锌液冷却管使用寿命的决定性因素;锌液冷却管的损坏是高温腐蚀和应力腐蚀共同作用的结果,热应力和残余应力促使其损坏由高温腐蚀向应力腐蚀发展;冷却管损坏位置由热应力和残余应力共同决定,其中热应力起主导作用。

关键词: 锌液     冷却管     损坏机理     高温腐蚀     应力腐蚀    

标题 作者 时间 类型 操作

Preparation and application of a phosphorous free and non-nitrogen scale inhibitor in industrial cooling water systems

Guangqing LIU,Mengwei XUE,Jingyi HUANG,Huchuan WANG,Yuming ZHOU,Qingzhao YAO,Lei LING,Ke CAO,Yahui LIU,Yunyun BU,Yiyi CHEN,Wendao WU,Wei SUN

期刊论文

Geosynthetics used to stabilize vegetated surfaces for environmental sustainability in civil engineering

Jie HAN,Jun GUO

期刊论文

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

Zinc homeostasis in the metabolic syndrome and diabetes

null

期刊论文

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

期刊论文

J-shaped association between dietary zinc intake and new-onset hypertension: a nationwide cohort study

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

期刊论文

Templated synthesis of urchin-like zinc oxide particles by micro-combustion

Xintong ZHOU, Quan ZHANG, Chang-jun LIU

期刊论文

electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion

期刊论文

A microextraction approach for rapid extraction and separation of Mn(II) and Co(II) using saponified

期刊论文

Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU

期刊论文

Enhanced debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by zero-valent zinc with ascorbic

Chaojin Jiang, Xiaoqian Jiang, Lixun Zhang, Yuntao Guan

期刊论文

锌液冷却管损坏机理的研究

袁望姣,何将三

期刊论文